

# Smart Sensor Technology for Environmental Monitoring Applications

Gary W. Hunter and Paul S. Greenberg NASA Glenn Research Center Cleveland, OH

C. C. Liu Case Western Reserve University Cleveland, OH

### OUTLINE

- INTRODUCTION
- SENSOR PLATFORMS AND SMART SENSOR SYSTEMS
  - >"LICK AND STICK" HARDWARE
  - >WIRELESS SENSOR AND NODES
- ENVIRONMENTAL MONITORING
  - FIRE/ENVIRONMENTAL MONITORING
  - > WATER MONITORING
- SUMMARY AND CONCLUSION





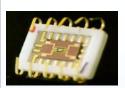
# BASE PLATFORM SENSOR TECHNOLOGY

NASA

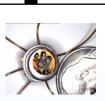
Integration of Micro Sensor Combinations into Small, Rugged Sensor Suites Example Applications: AEROSPACE VEHICLE FIRE, FUEL LEAKS, EMISSIONS, ENVIRONMENTAL MONITORING, CREW HEALTH, SECURITY

Multi Species Fire Sensors for Aircraft Cargo Bays and Space Applications






**Environmental** 


"Lick and Stick" Space Launch Vehicle Leak Sensors with Power and Telemetry



Aircraft Propulsion Exhaust High Temperature Electronic Nose



**Oxygen Sensor** 



SiC Hydrocarbon Sensor



Nanocrystalline Tin Oxide NOx and CO Sensor







Hydrazine EVA Sensors (ppb Level Detection)

Breath Sensor System Including Mouthpiece, PDA Interface, And Mini Sampling Pump





H2 Sensor

# BASE PLATFORM SENSOR TECHNOLOGY

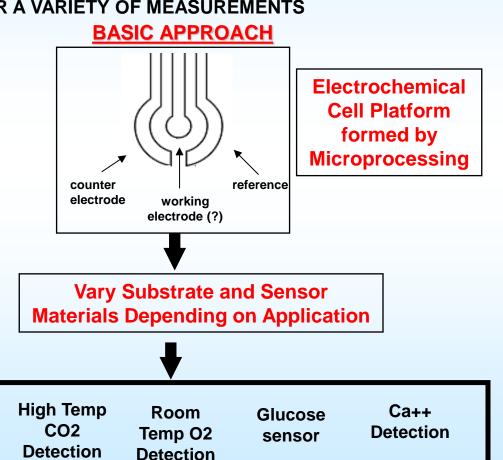
•SENSOR DEVELOPMENT RESULTING FROM:

- > MICROFABRICATION AND MICROMACHINING TECHNOLOGY
- > NANOMATERIALS
- > SIC-BASED SEMICONDUCTOR TECHNOLOGY
- •TECHNOLOGY DEVELOPS PLATFORMS FOR A VARIETY OF MEASUREMENTS

High Temp

02

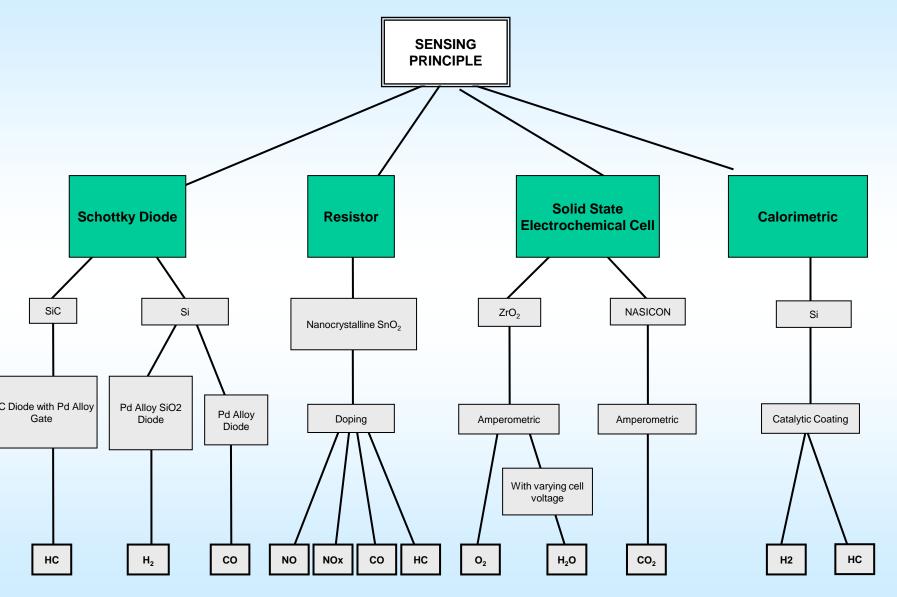
Detection


- > SCHOTTKY DIODE
- > RESISTANCE BASED
- ELECTROCHEMICAL
- MODIFY PLATFORMS AND MATERIALS TO MEET NEEDS OF THE APPLICATION
- SELECTIVE DETECTION OF TARGETED
  SPECIES

Meet the Needs of a

**Range of Applications** 

**Based On Platform** 


**Technology** 

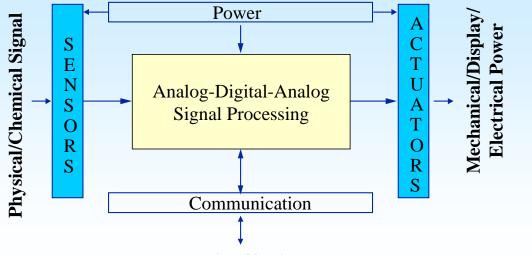






## **CHEMICAL SENSOR "FAMILY TREE"**






www.nasa.gov

#### **CORE MICROSYSTEMS TECHNOLOGY**



Microsystems Approach: Standalone, Complete Miniaturized Systems Including Sensors, Power, Communication, Signal Processing, And Actuation to Enable a Smart Sensor System

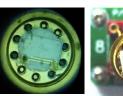


**Electrical/Optical** 

#### "LICK AND STICK" SMART LEAK SENSOR SYSTEM



#### EXAMPLE APPLICATON: FIRE/ENVIRONMENTAL MONITORING COMBINE CHEMICAL SPECIES/PARTICULATE DETECTION IN SMART SYSTEM

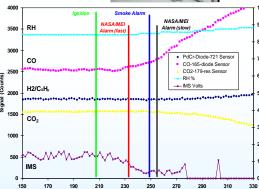



- DECREASE FALSE ALARM RATE IN BOTH AERONAUTICS AND SPACE APPLICATIONS
- INTEGRATED FIRE AND ENVIRONMENTAL MONITORING SYSTEM
  - > SINGLE SYSTEM COVERING BOTH FIRE AND ENVIRONMENTAL APPLICATIONS
  - > COMPLEMENTARY SENSOR TECHNOLOGIES: CROSS-CORRELATION BETWEEN SENSOR ELEMENTS IMPROVES OVERALL SYSTEM MEASUREMENT
  - > DEVELOPING MOBILE UNITS FOR FIRE FIGHTERS (HOMELAND SECURITY)
  - DATA STORAGE AND PROCESSING, BUILT-IN SELF CHECK; WIRELESS COMM OPTION

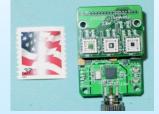


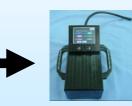


OPTICAL PARTICULATE SENSOR PACKAGE







REPRESENTATIVE PICTURES OF PACKAGE CHEMICAL SENSORS ( CO, CO2, AND HYDROCABONS)


**Combine Particulate And Chemical Species Detection** 

Testing at FAA with Combined Particulate and Chemical Species System: Advanced Detection of Fires with No False Alarms



Basic Approach: Transition Hardware Into Core "Lick And Stick" Hardware Platform; Multiple Configurations Available



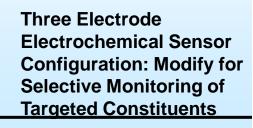


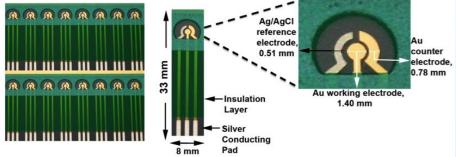


COMBINED FIRE/ENVIRONMENTAL MONITORING: STATIONARY AND HAND HELD UNITS (CHEMICAL SPECIES)



WIRLESS SENSOR AND NODE




## WATER QUALITY MONITORING APPROACH



- COMPLEMENT WATER BASED DETECTION WITH ATMOSPHERIC ENVIRONMENTAL MONITORING
  - > WHOLE FIELD APPROACH
  - > MULTIPLE SITES FOR REGIONAL COVERAGE
  - > CORRELATE WITH OTHER MEASUREMENTS E.G. REMOTE MONITORING
- SENSORS TAILORED TO MEASURE TARGETED SPECIES AND PARTICULATES. EXAMPLE:
  - > THREE ELECTRODE ELECTROCHEMICAL CELL: OPERATION IN BOTH AIR AND AQUEOUS ENVIRONMENTS
  - > CAPABILITY TO BE TAILORED FOR DETECTION OF SPECIFIC SPECIES
- DEMONSTRATED AQUEOUS BASED CHEMICAL SPECIES MEASUREMENTS (INCLUDES MEASUREMENTS IN DIVERSE MEDIA, E.G., BLOOD):
  - > BIOLOGICAL OXYGEN DEMAND (BOD)
  - ≻ pH
  - > HEAVY METAL IONS
- PARTICULATE FLUID MONITORING DEMONSTRATED
  - > SPACE ACT AGREEMENT ACTIVITY RELATED TO LIQUID-BASED PROCESS PARTICLE MONITORING
  - > TECHNIQUE CAN BE TAILORED FOR SPECIFIC PARTICLE MORPHOLOGIES







# NASA

#### WATER QUALITY/ATMOPSHERE MONITORING APPROACH ESTABLISH MULIPARMETER SMART SENSOR CAPABILITIES

- COMBINE CHEMICAL SPECIES AND PARTICULATE DETECTION APPROACHES TO TARGET WATER TOXINS AND POLLUTANTS
  - **BASELINE: BOD, PH, HEAVY METAL IONS**
  - **EXPAND ARRAY TO SPECIFIC TOXINS E.G., ARSENIC, FLUORIDE AND CHLORINE**
  - > TARGET MORPHOLOGIES OF BIOLOGICAL SPECIES
- DETECTION OF OTHER TARGETS OF INTEREST, FOR EXAMPLE, MICROCYSTIN-LR
  - **>** BIND ANTIBODY TO SENSOR ELECTRODE STRUCTURE
  - > CHANGES IN ELECTRICAL SIGNAL DUE TO CHANGES IN ANTIBODY
  - > CAN BE INCLUDED IN WATER MONITORING ARRAY
- PROVIDE SMART SENSOR SYSTEM TECHNOLOGY TO MONITOR BOTH ATMOSPHERE/WATER
  - > COUPLED WITH SMART HARDWARE FOR DATA PROCESSING AND STORAGE
  - ESTABLISH MONITORING STATIONS OVER A REGION (BOTH WATER BASED AND ATMOSPHERIC)
  - > WIRELESS NODES TO FORM BROAD REGIONAL NETWORK
  - > CORRELATION OF MEASURED PROPERTIES TO:
    - SEASONAL PATTERNS (E.G. FARM RUNOFF) AND POLLUTION
    - OCCURRENCE OF DISRUPTIVE EVENTS (E.G., ALGAE BLOOMS)
    - INDICATIONS OF CHANGE IN LOCAL PROPERTIES

CORE POINT: IN ORDER TO UNDERSTAND WATER QUALITY, A MULTIPARAMETER, REGIONAL APPROACH NEEDED TO IDENFITY CAUSATION AND CHANGES

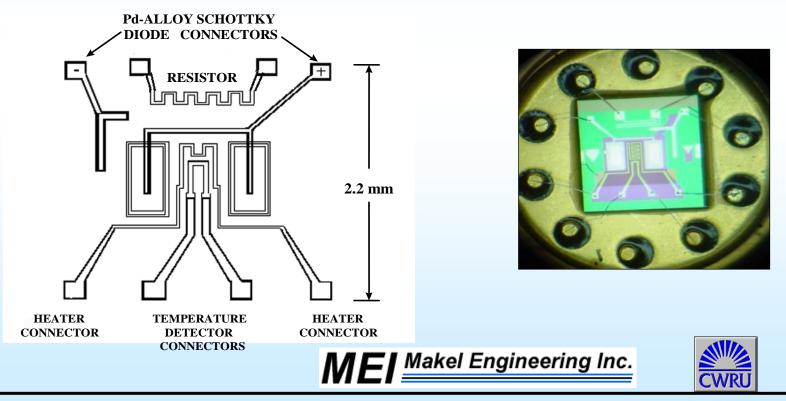
## SUMMARY AND LONG-TERM VISION



- SMART SENSOR SYSTEM TECHNOLOGY DEVELOPED USING BASE PLATFORM TECHNOLOGY AND MICROSYSTEMS
  - > MULTIPARAMETER, SELECTIVE MICROSENSOR APPROACH
  - INTEGRATION INTO SMART SENSOR SYSTEMS WITH A MICROPROCESSOR, DATA STORAGE, AND COMMUNICATION CAPABILITIES
  - > SYSTEMS FOR TARGETED APPLICATIONS DEMONSTRATED
- WATER QUALITY MONITORING: WHOLE FIELD APPROACH: BOTH WATER AND AIR MONITORING IN PARALLEL
- ADOPT SMART SENSOR SYSTEM APPROACH
  - > SELECTIVE, MULTIPARAMETER SENSOR TECHNOLOGY
  - > INTEGRATED WITH SMART SYSTEM HARDWARE
  - > REGIONAL MONITORING WITH WIRELESS NODES
- CORE TECHNOLOGIES EXIST; TARGETED DEVELOPMENT NEEDED FOR THIS APPLICATION
  - > SPECIFIC TOXINS AND BIOLOGICAL PARAMETER
  - > IMPLEMENTATION OF SYSTEMS
  - > CORRELATION OF RESULTS
- THE WATER SYSTEM IS A CONNECTED SYSTEM: MONITORING WATER QUALITY NEEDS A WHOLE
  FIELD APPROACH
  - SMART SENSOR SYSTEMS CAN BE USED TO PROVIDE BASIC IN-SITU INFORMATION FOR MODELS AND CORRELATION OF EVENTS

National Aeronautics and Space Administration




# **Back-Up Slides**

www.nasa.gov

## HYDROGEN LEAK SENSOR TECHNOLOGY



- MICROFABRICATED USING MEMS-BASED TECHNOLOGY FOR MINIMAL SIZE, WEIGHT AND POWER CONSUMPTION
- DESIGNED TO OPERATE WITHOUT OXYGEN AND IN VACUUM ENVIRONMENTS
- HIGHLY SENSITIVE IN INERT OR OXYGEN-BEARING ENVIRONMENTS, WIDE CONCENTRATION RANGE DETECTION
- TWO SENSOR SYSTEM FOR FULL RANGE DETECTION: FROM PPM LEVEL TO 100%





#### A WIDE RANGE OF SYSTEM DEMONSTRATIONS AND APPLICATIONS "LICK AND STICK" CORE HARDWARE

Jet Engines Emissions



Aircraft Fire Detection



**Breath Monitoring** 

NASA Helios Fuel Cells



International Space Station Safety System



Rocket Engine Teststands



Environmental Monitoring

